电工之家 - 电工学习网站收藏本页
当前位置:电工之家 > 维修电工 > 正文

开关电源工作原理详解析与故障分析

时间:2016-10-04 10:22 来源:电工之家 作者:编辑部

【摘要】开关电源工作原理详解析与故障分析 一、开关式稳压电源的基本工作原理 开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关......

开关电源工作原理详解析与故障分析
一、开关式稳压电源的基本工作原理
开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。
调宽式开关稳压电源的基本原理可参见下图。

对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算,
即Uo=Um×T1/T
式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。
从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。
二、开关式稳压电源的原理电路
1、基本电路

图二 开关电源基本电路框图
开关式稳压电源的基本电路框图如图二所示。
交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。
控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。
2.单端反激式开关电源
单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

单端反激式开关电源是一种成本最低的电源电路,输出功率为20-100W,可以同时输出不同的电压,且有较好的电压调整率。唯一的缺点是输出的纹波电压较大,外特性差,适用于相对固定的负载。
单端反激式开关电源使用的开关管VT1 承受的最大反向电压是电路工作电压值的两倍,工作频率在20-200kHz之间。
3.单端正激式开关电源
单端正激式开关电源的典型电路如图四所示。这种电路在形式上与单端反激式电路相似,但工作情形不同。当开关管VT1导通时,VD2也
导通,这时电网向负载传送能量,滤波电感L储存能量;当开关管VT1截止时,电感L通过续流二极管VD3 继续向负载释放能量。

在电路中还设有钳位线圈与二极管VD2,它可以将开关管VT1的最高电压限制在两倍电源电压之间。为满足磁芯复位条件,即磁通建立和
复位时间应相等,所以电路中脉冲的占空比不能大于50%。由于这种电路在开关管VT1导通时,通过变压器向负载传送能量,所以输出功率范围大,可输出50-200 W的功率。电路使用的变压器结构复杂,体积也较大,正因为这个原因,这种电路的实际应用较少。
4.自激式开关稳压电源
自激式开关稳压电源的典型电路如图五所示。这是一种利用间歇振荡电路组成的开关电源,也是目前广泛使用的基本电源之一。

当接入电源后在R1给开关管VT1提供启动电流,使VT1开始导通,其集电极电流Ic在L1中线性增长,在L2 中感应出使VT1 基极为正,发射极为负的正反馈电压,使VT1 很快饱和。与此同时,感应电压给C1充电,随着C1充电电压的增高,VT1基极电位逐渐变低,致使VT1退出饱和区,Ic 开始减小,在L2 中感应出使VT1 基极为负、发射极为正的电压,使VT1 迅速截止,这时二极管VD1导通,高频变压器T初级绕组中的储能释放给负载。在VT1截止时,L2中没有感应电压,直流供电输人电压又经R1给C1反向充电,逐渐提高VT1基极电位,使其重新导通,再次翻转达到饱和状态,电路就这样重复振荡下去。这里就像单端反激式开关电源那样,由变压器T的次级绕组向负载输出所需要的电压。
自激式开关电源中的开关管起着开关及振荡的双重作从,也省去了控制电路。电路中由于负载位于变压器的次级且工作在反激状态,具有输人和输出相互隔离的优点。这种电路不仅适用于大功率电源,亦适用于小功率电源。
5.推挽式开关电源
推挽式开关电源的典型电路如图六所示。它属于双端式变换电路,高频变压器的磁芯工作在磁滞回线的两侧。电路使用两个开关管VT1和VT2,两个开关管在外激励方波信号的控制下交替的导通与截止,在变压器T次级统组得到方波电压,经整流滤波变为所需要的直流电压。

这种电路的优点是两个开关管容易驱动,主要缺点是开关管的耐压要达到两倍电路峰值电压。电路的输出功率较大,一般在100-500 W范围内。
6.降压式开关电源
降压式开关电源的典型电路如图七所示。当开关管VT1 导通时,二极管VD1 截止,输人的整流电压经VT1和L向C充电,这一电流使电感L中的储能增加。当开关管VT1截止时,电感L感应出左负右正的电压,经负载RL和续流二极管VD1释放电感L中存储的能量,维持输出直流电压不变。电路输出直流电压的高低由加在VT1基极上的脉冲宽度确定。

这种电路使用元件少,它同下面介绍的另外两种电路一样,只需要利用电感、电容和二极管即可实现。
7.升压式开关电源
升压式开关电源的稳压电路如图八所示。当开关管 VT1 导通时,电感L储存能量。当开关管VT1 截止时,电感L感应出左负右正的电压,该电压叠加在输人电压上,经二极管VD1向负载供电,使输出电压大于输人电压,形成升压式开关电源。

8.反转式开关电源
反转式开关电源的典型电路如图九所示。这种电路又称为升降压式开关电源。无论开关管VT1之前的脉动直流电压高于或低于输出端的稳定电压,电路均能正常工作。

当开关管 VT1 导通时,电感L 储存能量,二极管VD1 截止,负载RL靠电容C上次的充电电荷供电。当开关管VT1截止时,电感L中的电流继续流通,并感应出上负下正的电压,经二极管VD1向负载供电,同时给电容C充电。
以上介绍了脉冲宽度调制式开关稳压电源的基本工作原理和各种电路类型,在实际应用中,会有各种各样的实际控制电路,但无论怎样,也都是在这些基础上发展出来的。
下面就对开关电源常见故障产生的原因作一分析及如何排除这些故障的维修方法。
一. 保险丝熔断
一般情况下,保险丝熔断说明开关电源的内部电路存在短路或过流的故障。由于开关电源工作在高电压,大电流的状态下,直流滤波和变换振荡电路在高压状态工作时间太长,电压变化相对大。电网电压的波动,浪涌都会引起电源内电流瞬间增大而使保险丝熔断。重点应检查电源输入端的整流二极管,高压滤波电解电容,开关功率管,UC3842本身及外围元器件等。检查一下这些元器件有无击穿,开路,损坏,烧焦,炸裂等现象。
维修方法:首先仔细查看电路板上面的各个元件,看是否在这些元件的外表有没有被烧糊, 有没有电解液溢出,闻一闻有没有异味。经看,闻之后,再用万用表进行检查。首先测量一下电源输入端的电阻值,若小于200K,则说明后端有局部短路现象,然后分别测量四只整流二极管正,反向电阻和两个限流电阻的阻值,看其有无短路或烧坏;然后再测量一下电源滤波电容是否能进行正常充放电,再就测量一下开关功率管是否击穿损坏,以及UC3842本身,及周围元件是否击穿,烧坏等。需要说明的一点是:因是在路测量,有可能会使测量结果有误,造成误判。因此必要时可把元器件焊下来再进行测量。如果仍然没有上述情况则测量一下输入电源线及输出电源线是否内部短路。一般情况下,熔断器熔断故障,整流二极管,电源滤波电容,开关功率管,UC3842是易损件,损坏的概率可达95%以上,一般着重检查一下这些元器件,就可很容易排除此类故障。
二. 无直流电压输出或电压输出不稳定
如果保险丝是完好的,在有负载的情况下,各级直流电压无输出。这种情况主要是以下原因造成的:电源中出现开路,短路现象,过压,过流保护电路出现故障,振荡电路没有工作,电源负载过重,高频整流滤波电路中整流二极管被击穿,滤波电容漏电等。
维修方法:首先,用万用表测量一下高频变压器次级的各个元器件是否有损坏。在排除了高频整流二极管击穿、负载短路的情况后,然后在测量各输出端的直流电压,如果这时输出仍为零,则可以肯定是电源的控制电路出了故障。控制电路的两部分是集成开关电源控制器和过压保护电路。最后用万用表静态测量高频滤波电路中整流二极管及低压滤波电容是否损坏。如果确实相关的元件损坏,在更换好新的完好的元件后,开机测试,一般故障即可排除。需要说明的是:电源输出线断线或开焊,虚焊也会造成这种故障。在维修时应注意这一点。
三. 电源负载能力差
电源负载能力差是一个常见的故障,一般都是出现在老式或是工作时间长的电源中,主要原因是各元器件老化,开关管的工作不稳定,没有及时进行散热等。此外还有稳压二极管发热漏电,整流二极管损坏等。
维修方法:用万用表着重检查一下稳压二极管,高压滤波电容,限流电阻有无变质等再仔细检查一下电路板上的所有焊点是否开焊,虚接等。把开焊的焊点重新焊牢,更换变质的元器件,一般故障即可排除。
四. 无直流电压输出,但保险丝完好
这种现象说明开关电源未工作,或者工作后进入了保护状态。
维修方法:首先应判断一下开关电源的主控芯片UC3842是否处在工作状态或已经损坏。判断方法是这样的:加电测UC3842的第7脚对地电压,若测第8脚有+5V电压,1,2,4,6脚也有不同的电压,则说明电路已起振,UC3842基本正常;若7脚电压低,其余管脚无电压或不波动,则UC3842已损坏。UC3842芯片损坏最常见的是6,7脚对地击穿,5,7脚对地击穿和1,7脚对地击穿。如果这几只脚都为击穿,而开关电源还是不能正常启动,则UC3842必坏,应直接更换。若判断芯片未坏,则就着重检查开关功率管的栅极(G极)的限流电阻是否开焊,虚接,变值,变质以及开关功率管本身是否性能不良。除此之外,电源输出线也有可能断线或接触不良也会造成这种故障。因此在维修时也应注意检查一下。
五.有直流电压输出,但输出电压过高
这种故障往往来自于稳压取样和稳压控制电路出现故障所致。在开关电源中,直流输出、取样电阻、误差取样放大器(如LM324,LM358等)、光耦合器(PC817)、电源控制芯片(UC3842)等电路共同构成了一个闭合的控制环路,任何一处出问题都会导致输出电压升高。
维修方法:由于开关电源中有过压保护电路,输出电压过高首先会使过压保护电路动作。因此对于这种故障的维修,我们可以通过断开过压保护电路,使过压保护电路不起作用,在这时,测量开机瞬间的电源主电压。如果测量值比正常值高出IV以上,说明输出电压过高。我们应着重检查取样电阻是否变值或损坏,精密稳压放大器(TL431)或光耦合器(PC817)性能不良,变质或损坏;其中精密稳压放大器(TL431)极易损坏,我们可用下述方法对精密稳压放大器(TL431)作出好坏的判别:将TL431的参考端(Ref)与它的阴极(Cathode)相连,串10k的电阻,接入5V电压,若阳极(Anode)与阴极之间为2.5V,并且等待片刻还仍然为2.5V,则为好管,否则为坏管。
六.有直流电压输出,但输出直流电压过低
对于这种故障现象,根据维修经验可知,除稳压控制电路会引起输出电压过低外,还有一些原因会引起输出电压过低,主要有以下几点:
1.开关电源负载有短路故障。此时,应断开开关电源电路的所有负载,以区分是开关电源电路还是负载电路有故障。若断开负载电路电压输出正常,说明是负载过重;若仍不正常,说明开关电源电路有故障。
2.输出电压端整流二极管、滤波电容失效等,可以通过代换法进行判断。
3.开关功率管的性能下降,必然导致开关管不能正常导通,使电源的内阻增加,带负载能力下降。
4.开关功率管的源极(S极),通常接一个阻值很小,但功率很大的电阻,作为过流保护检测电阻,此电阻的阻值一般在0.2到0.8之间。此电阻如变值或开焊,接触不良也会造成输出电压过低的故障。
5.高频变压器不良,不但造成输出电压下降,还会造成开关功率管激励不足从而屡损开关管。
6. 高压直流滤波电容不良,造成电源带负载能力差,一接负载输出电压便下降。
7.电源输出线接触不良,有一定的接触电阻,造成输出电压过低。
8.电网电压是否过低。虽然开关电源在低压下仍然可以输出额定的电压值,但当电网电压低于开关电源的最低电压限定值时,也会使输出电压过低。
维修方法:对于这种故障我们可以根据以上故障原因,来逐一进行排查。但在实际维修时,可根据实际情况来进行排查,不一定要逐一排查。首先用万用表检查一下高压直流滤波电容是否变质,容量是否下降,能否正常充放电。如无以上现象,则测量一下开关功率管的栅极(G极)的限流电阻以及源极(S极)的过流保护检测电阻是否变值,变质或开焊,接触不良。经判别后,若无问题,我们就检查一下高频变压器的铁芯是否完好无损。因在日常生活使用中,不可避免的重摔或重幢,使高频变压器的铁芯损坏。使高频变压器的磁通量,磁感应强度,以及磁路等都会受到很大的影响,造成传输的效率,能量将会大打折扣。由于高频变压器为了减小涡流,增大高频交流电的传输效率,它的铁芯是用软磁铁氧体制作而成的。这种磁性材料具有高的导磁率,但质脆,易碎。因此它的损坏率也是很高的。因此在维修时千万不要忘了检查此处,以免走弯路。除此之外还有可能就是输出滤波电容容量降低,甚至失容或开焊,虚接;电源输出限流电阻变值或虚接,电源输出线虚接等。在实际维修时,这些因素都不要放过,都应检查一下,以保证万无一失。
七. 散热风扇不转
这种故障原因主要是由于控制风扇的三极管(8550或8050)损坏,或者风扇本身损坏或风叶被杂物卡住。但有些开关电源中采用的是智能散热,对于采用这种方式散热的开关电源,热敏电阻损坏的概率是很大的。
维修方法:首先用万用表测量一下控制风扇的三极管是否损坏,若测得此管未损坏那就有可能是风扇本身损坏。可以把风扇从电路板上拔下来,另外接上一个12V的直流电(注意正负极),看是否转动,并看有无异物卡住。若摆动几下风扇的电线,风扇就转动,则说明电线内部有断线或接头接触不良。若仍不转动,则风扇必坏。对于采用智能散热的开关电源来说,除按上述检查外,还应检查一下热敏电阻是否不良或损坏,开焊等。但要注意此热敏电阻为负温度系数的热敏电阻,更换时应注意。